The magnitude of nocebo effects in pain: A meta-analysis

Gitte Laue Petersen¹,b,*, Nanna Brix Finnerupb, Luana Colloca¹, Martina Amanzio¹, Donald D. Pricee, Troels Staehelin Jensenb, Lene Vase¹,b

¹Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
²Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
³National Center for Complementary and Alternative Medicine (NCCAM), National Institute of Mental Health (NIMH), and Clinical Center, Department of Bioethics, National Institutes of Health, Bethesda, MD, USA
⁴Department of Psychology, University of Turin, National Institute of Neuroscience (INN), Turin, Italy
⁵Division of Neuroscience, Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA

Keywords:
Nocebo
Placebo
Pain
Magnitude
Verbal suggestion
Conditioning

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

1. Introduction

The nocebo effect is the opposite phenomenon of the placebo effect, which is defined as the effect that follows the administration of an inert placebo treatment [7]. A placebo treatment is typically given along with verbal suggestions of clinical improvement, thereby making the patient expect symptom relief. The nocebo effect was originally introduced to describe the negative side effects of a placebo treatment [29,41,43]. Negative side effects occur when expectations of symptom relief result in symptom worsening. Today, the nocebo effect is an independent phenomenon. Accordingly, the nocebo effect is defined as the effect that follows the administration of an inert treatment along with verbal suggestions of symptom worsening. The patient expects to feel worse and eventually will [6,7]. To differentiate nocebo effects and placebo effects from spontaneous remission and other confounding factors, they are calculated as the symptom difference between a nocebo-treated or placebo-treated group or condition and a no-treatment group or condition [27]. Both nocebo effects and placebo effects are at least partly mediated by the patient’s expectations of pain increase or pain relief from a treatment. Expectations may be influenced by prior experiences, as in classical conditioning, and/or by verbal suggestions given, for example, by health care providers [6,56].

Several meta-analyses on the magnitude of placebo analgesia effects have been conducted [4,35–37,55,63,64]. Across meta-analyses, the magnitude of placebo effects has been shown to vary from Cohen’s $d = -0.28$ [35] to $d = 1.14$ [55] and to depend on how the placebo effect was induced. When placebo effects are induced by verbal suggestions alone, an average effect size of $d = 0.85$ has been found, as opposed to an average effect size of $d = 1.45$ when verbal suggestions and conditioning are combined [63].
Nocebo effects, especially in pain, have recently received increasing interest, and a few literature reviews have emerged [10,18,22]. So far, however, no quantification of the effects has been conducted. The nocebo literature is, to a large extent, based on studies involving healthy volunteers exposed to different types of experimental pain manipulations, and therefore the designs are likely to vary across studies. Still, it is of interest to analyze the magnitude and variation of the nocebo effect and to put these findings into perspective in relation to the placebo effect. With this aim in mind, we provide a meta-analysis on nocebo effects in experimental pain studies to answer the following questions: How large are the magnitudes and heterogeneity of nocebo effects? Do the magnitudes of nocebo effects vary according to whether they are induced by verbal suggestions alone or by verbal suggestions combined with conditioning?

2. Methods

2.1. Sample of studies

Studies were identified by searching the electronic databases PubMed, EMBASE, Scopus, and the Cochrane Controlled Trial Register (the Cochrane Library) using the search term “nocebo”. With regard to EMBASE and Scopus, it was possible to search for articles only, and this strategy was therefore chosen. The search terms “nocebo effect” and “nocebo hyperalgesia” were also applied, but they did not generate further studies. No limits were applied except the inclusion of human subjects, as no meta-analysis on nocebo effects had been carried out before. The last database search was run on May 31, 2013.

2.2. Selection criteria

Studies were required to be published as new full-length articles, and therefore abstracts, reviews, and double publications were not considered. As the nocebo effect can be conceptualized as increased negative pain symptom(s) that result from learning procedures (classical conditioning or social observation) and/or verbal suggestions of symptom worsening, the following selection criteria were applied:

(1) The purpose of the study should be experimental investigation of nocebo effects in pain. Therefore, adverse effects of (placebo) treatments, for example, following information disclosing potential side effects, were not considered, as the purpose of such verbal information was not to increase pain. Likewise, manipulations and verbal suggestions given to increase pain outside a treatment setting or without administration of an inert treatment were not considered.

(2) The study should include a nocebo treatment. The nocebo treatment was conceptualized as administration of an inert agent/intervention along with verbal suggestions for pain increase and/or a learning procedure (either classical conditioning or social observation) that aimed to increase pain levels.

(3) The study should include information on no treatment, so the nocebo effect could be calculated as the difference in pain between a nocebo treatment and no treatment. The information on no treatment could come either from a no-treatment group or condition or from the change between minimum and maximum pain levels.

(4) Only pain studies (both experimental pain and clinical pain) including numerical rating of pain intensity were included (ie, both the visual analogue scale [VAS] and the numeric rating scale [NRS]). To allow for consistency across the sample, only pain intensity ratings were obtained; in the case of several outcome measures on pain intensity, the one that was most clinically relevant was chosen, as this was considered to be the best test of the existence of nocebo effects.

(5) The study should be randomized or counterbalanced and should involve blinding procedures.

Studies that investigated nocebo effects but did not fulfill 1 or more of the selection criteria were excluded from the meta-analysis. Excluded studies are listed in Appendix A, along with reasons for the exclusion.

2.3. Study selection and assessment

Eligibility assessment was performed independently by 2 authors (G.L.P. and L.V.). The quality of the studies was assessed by 4 authors (G.L.P., L.V., N.B.F., and D.D.P.), who read and assessed the quality of each study independently. Data extraction was performed by 2 authors (G.L.P. and L.V.). Any disagreements were resolved by consensus among all authors.

2.4. Trial flow

A total of 540 potential articles were identified through the database search, and 272 articles remained for consideration after removal of duplicates. The articles were screened on the basis of the title and abstract. Of these, 61 articles were excluded because they were reviews, and 195 articles were discarded based on the first selection criterion, as they were not empirical investigations of nocebo effects in pain. Six articles were excluded based on the second selection criterion, as they did not administer an inert nocebo treatment/intervention. Ten articles were examined in detail and included in the meta-analysis, as they met all of the selection criteria [8,9,11,20,21,26,39,45,62,66]. No additional articles were identified by checking the references of the included articles. Fig. 1 provides a flow diagram of the study selection according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [52].

2.5. General considerations in data collection

The majority of studies investigated the nocebo effect via a nocebo-treated group or condition and a no-treatment group or condition [9,11,39,62] or minor variations of this classical clinical design [8,26,45,66]. One study [8] applied the open/hidden design [19], but it was comparable to the other studies, as inactive saline solution was administered in full view of the patient, along with verbal suggestions for pain increase in the open condition and without the patient’s knowledge in the hidden condition. Two studies [20,21] deviated from the classical clinical design in the investigation of nocebo effects, as no absolute control condition was included. In these studies, the nocebo effect was calculated as the difference between the minimum and maximum pain levels in the nocebo condition. It is theoretically and practically difficult to avoid any influence on the no-treatment group [33,34], so in that sense it is acceptable to include control groups that minimize the influence. Also, the studies did administer an inert treatment/intervention with the purpose of increasing participants’ pain levels (by means of a sham electrode) and induced pain via verbal suggestions alone or verbal suggestions combined with conditioning, in accordance with the classical clinical design studies. Further considerations concerning data collection are provided in Appendix B.

2.6. Statistical analysis

We conducted the meta-analysis using the Comprehensive Meta-Analysis Program, version 2.2.057 (Comprehensive
As the nocebo effects used different designs and were conducted in different populations, the analyses were based on a random effects model to take into account the within-study error and the between-study variance [14]. Means and standard deviations were used for the calculation of effect sizes. If only standard errors were reported, they were converted to standard deviations. The effect size was computed as the mean for the no-treatment group or condition minus the mean for the nocebo-treated group or condition, divided by the pooled standard deviation (Cohen’s d) [16]. The magnitudes were reported as effect sizes weighted according to the number of subjects (N) in each study (Hedges’ g) [29,30]. Positive values of d and g indicate higher pain ratings in the nocebo condition compared with the no-treatment condition. Negative values of d and g indicate lower pain ratings in the nocebo condition compared with the no-treatment condition. A value of 0.2 was considered a small effect, a value of 0.5 a medium effect, and a value of 0.8 a large effect [17].

If data were insufficiently, unclearly, or not reported in the articles, the authors were contacted and asked to provide us with the data. We were unable to obtain original data from 3 studies [8,9,11], in which we based our calculations on reported data or readouts of figures in the article. In 1 of the studies [9], our readouts were not directly comparable to the pain ratings reported in the article, and we therefore adjusted our read values to the reported values to optimize the accuracy of our calculations (further information is provided in Appendix B). Some studies [9,39] have several reports of how the magnitudes of nocebo effects vary over time; we preferred data, if available, for each subject’s pain rating at each measured time point. This allowed original data to be entered into the analysis even when the numbers (N) changed over time. In other studies [20,66], N changed because the nocebo effects were induced by means of verbal suggestions alone or in combination with conditioning in groups with different N. To facilitate a more precise comparison across studies, the lowest and highest effect sizes of nocebo effects were calculated instead of an average. This strategy was chosen to avoid manipulation of the original data. If pain was measured only at 1 time point, this measure was used in the respective calculations of the lowest and highest magnitude of nocebo effects.

Based on the N reported in the studies, some of the nocebo effects could be calculated both as “between-subject” and “within-subject” comparisons. In all studies, we entered the nocebo effect as a “between-subject” comparison if this was done in the original study. Likewise, we entered the nocebo effect as a “within-subject” comparison if this was done in the original study. For the studies applying “within-subject” comparisons, N was considered the N for the paired sample, and for the studies applying “between-subject” comparisons, the exact number of observations for the separate samples was chosen. Data from studies applying “within-subject” comparisons were adjusted using the approach adopted by the Comprehensive Meta-Analysis Program, which included calculations of effect sizes based on pre–post correlations of measures. The change between pre and post measures was based on the Pearson’s correlation coefficients (r).

In the program, the type of induction of nocebo effects was treated as a subgroup moderator analysis with verbal suggestions, verbal suggestion combined with conditioning, and social observation as 3 subgroups. Significance of heterogeneity in the sample of studies was evaluated by Q statistics [16], and the variance accounted for by heterogeneity was assessed by I^2 statistics. I^2 values of 25%, 50%, and 75% indicate low, moderate, and high degrees of heterogeneity, respectively [32].

3. Results

3.1. Characteristics of included studies

Descriptive data for each of the included studies are presented in Table 1. The included studies involved 334 participants divided on 49 patients in 20 studies and 285 healthy volunteers in 8 studies. In studies of patients, they either had mild pain (NRS ≤ 3) following video-assisted thoracoscopy [8] or were female patients with persistent pain due to irritable bowel syndrome [62]. In studies of healthy volunteers, 1 study was based exclusively on males, 4 studies on females, and 5 studies on a mix of males and females.

Regarding the verbal suggestions for pain increase, all studies except that by Vögtle et al. [66] gave moderate to strong suggestions for pain increase. None of the studies gave verbal suggestions to the extent that the participant would have a 50/50 probability of pain increase.

3.2. Overall magnitude of nocebo effects

Results for each of the 10 included studies are presented in Table 2. Across the studies, the lowest effect size was $g = 0.62$ (0.24–1.01), whereas the highest effect size was $g = 1.03$ (0.63–1.43). The effect sizes varied from no effect to very large effects, as indicated by the range of g values from −0.43 to 4.05. The confidence intervals depicted in Table 2 also show this variability. Thus, the overall magnitude of nocebo effects was moderate to large and highly variable. There did not appear to be any systematic differences in effect sizes as a function of population, pain stimuli, agent, blindness procedure, pain measure, or time of pain measurement; however, this was not investigated via a statistical test, because of the low number of included studies in the meta-analysis. The heterogeneity analyses showed that there was a high degree of heterogeneity between studies for the lowest effect size of g ($Q(9) = 34.103, P < .000, I^2 = 73.61\%$) as well as for the highest effect size of g ($Q(9) = 37.330, P < .000, I^2 = 75.89\%$).

3.3. Magnitude of nocebo effects according to method of induction

In 6 studies, nocebo effects were induced by verbal suggestions alone, resulting in the lowest effect size of $g = 0.64$ (−0.25 to 1.53) and the highest effect size of $g = 0.87$ (0.40–1.34). In 5 studies, nocebo effects were induced by verbal suggestions combined with a conditioning procedure, resulting in the lowest effect size of...
4.1. Magnitude of nocebo effects in pain

This meta-analysis demonstrates a moderate to large magnitude of nocebo effects in relation to pain, as indicated by the lowest effect size of $g = 0.62$ (0.24–1.01) and the highest effect size of $g = 1.03$ (0.63–1.43). A large variation from no effect to very large effects, as indicated by a range of g from -0.43 to 4.05, was found. Also, large confidence intervals across studies were observed. The heterogeneity analyses showed that the included studies were highly heterogeneous, suggesting that the overall effect sizes may not be a precise estimate. Therefore, the generally large dispersion of effect sizes across studies should be emphasized, instead of an exclusive focus on the overall summary outcome. This is highlighted in the presentation of the lowest and highest magnitudes of effect sizes. The high degree of heterogeneity across studies is not unexpected, taking the differences in applied experimental designs and nocebo manipulations into account.

The large variability in the magnitude of nocebo effects does not seem to be explained by differences between healthy subjects and patients. This is not surprising, as the patients in the 2 studies [8,62] experienced only mild pain or pain that did not require pain medication. The magnitude did not appear to vary as a function of pain stimuli, agent, pain measure, blindness procedure, or time of measurement.
pain measurement. Because of the low number of included studies, no statistical test was performed on the potentially moderating effects of these factors. However, based on a thorough look at the data, there were no indications that the magnitude varied systematically according to these factors, and hence they do not seem to predict the size of the nocebo effect across the included pain studies. Nonetheless, future studies of these aspects, including formal tests, are warranted.

4.2. Magnitude of nocebo effects as a function of how the effects were induced

The magnitude of nocebo effects varied according to how the effects were induced. Our results showed that verbal suggestions of pain increase alone led to a moderate to large nocebo effect (lowest $g = 0.64$ [−0.25 to 1.53] and highest $g = 0.87$ [0.40–1.34]) and a larger nocebo effect when verbal suggestions were combined with conditioning (lowest $g = 0.76$ [0.39–1.14] and highest $g = 1.17$ [0.52–1.81]). Even though the magnitudes differed according to how the effects were induced, the difference was not statistically significant. Still, it is important to note that verbal suggestions without conditioning appear to be able to produce moderate to large nocebo effects, so the presence of a nocebo effect may not depend on a preconditioning procedure. However, prior experience may enhance the magnitude of the nocebo effect. One of the included studies [21] investigated whether the number of learning trials influenced the persistence of nocebo effects. It was found that several trials of conditioning induced a more robust and persistent nocebo effect ($g = 0.79$ [0.46–1.13]) than 1 trial of conditioning ($g = 0.51$ [0.20–0.82]). Thus, prior negative experience with treatments may have an effect on how subsequent treatments are perceived, as recently illustrated by Kessner et al. [42]. Only 1 study [66] applied social observation and no verbal suggestions for pain increase, resulting in a small to medium effect size. It is, however, preliminary to evaluate the influence of social observation on the magnitude of nocebo effects, based on a single study.

4.3. Nocebo effects and placebo effects

As the applied conceptualization of the nocebo effect is analogous to the general conceptualization of the placebo effect, and as similar selection criteria were used in 1 of the meta-analyses on the magnitude of placebo effects [64], it is possible to discuss the magnitude of nocebo effects and placebo effects. In the meta-analysis by Vase et al. including 24 studies published between 2002 and 2007, the average weighted effect size was $d = 0.81$ (range 0.12–2.51). This is comparable to the magnitudes of nocebo effects (ie, lowest $d = 0.65$ [0.24–1.05] and highest $d = 1.07$ [0.65–1.48]). Thus, the overall magnitudes of nocebo and placebo effects appear to be roughly similar.

In a previous meta-analyses on placebo effects [63], placebo effects induced via verbal suggestions had an average effect size of $d = 0.85$, whereas in studies in which verbal suggestions and conditioning were combined, the average effect size was $d = 1.45$. These findings are also comparable to the present findings on nocebo effects (verbal suggestions alone, $d = 0.90$, and verbal suggestions combined with conditioning, $d = 1.22$). The comparable magnitudes for nocebo and placebo effects could support the hypothesis that similar mechanisms are involved in opposite effects. For example, the healthy subject or patient perceives the agent as more powerful when the intervention involves both verbal suggestions and conditioning as opposed to verbal suggestions alone. However, further experimental studies are warranted to clarify the specific mechanisms involved in the effects. Overall, the findings from meta-analyses on placebo and nocebo effects suggest that, roughly speaking, it may be equally easy or difficult to obtain nocebo effects and placebo effects.

4.4. Nocebo effects in clinical research and practice

Compared with placebo research, little attention has been directed to clinical studies of nocebo effects and their implications for clinical practice [1]. The nocebo effects analyzed in this meta-analysis represent the effects that can be attributed to a nocebo treatment (ie, an inert treatment along with verbal suggestions

Table 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Pain measure</th>
<th>Time of pain measurement</th>
<th>Cohen’s d lowest (95% CI)</th>
<th>Cohen’s d highest (95% CI)</th>
<th>Hedges’ g^a lowest (95% CI)</th>
<th>Hedges’ g^a highest (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benedetti et al.</td>
<td>NRS</td>
<td>Before the injection and after 30 min</td>
<td>2.10 (1.29–2.91)</td>
<td>2.10 (1.29–2.91)</td>
<td>2.05 (1.26–2.85)</td>
<td>2.05 (1.26–2.85)</td>
</tr>
<tr>
<td>Benedetti et al.</td>
<td>Tolerance</td>
<td>From last squeeze to unbearable pain</td>
<td>1.12 (0.29–1.95)</td>
<td>1.12 (0.29–1.95)</td>
<td>1.09 (0.28–1.89)</td>
<td>1.09 (0.28–1.89)</td>
</tr>
<tr>
<td>Benedetti et al.</td>
<td>NRS</td>
<td>Every minute for 10 min</td>
<td>1.40 (0.53–2.28)</td>
<td>4.19 (2.79–5.59)</td>
<td>1.35 (0.51–2.20)</td>
<td>4.05 (2.70–5.41)</td>
</tr>
<tr>
<td>Colloca et al.</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.62 (−0.35 to 1.60)</td>
<td>1.13 (0.61–1.64)</td>
<td>0.59 (−0.33 to 1.50)</td>
<td>1.06 (0.57–1.55)</td>
</tr>
<tr>
<td>Colloca et al.</td>
<td>VAS</td>
<td>After each trial</td>
<td>0.53 (0.20–0.85)</td>
<td>0.82 (0.48–1.17)</td>
<td>0.51 (0.20–0.82)</td>
<td>0.79 (0.46–1.13)</td>
</tr>
<tr>
<td>Elsenbruch et al.</td>
<td>VAS</td>
<td>After each stimulation</td>
<td>0.11 (−0.59 to 0.80)</td>
<td>0.23 (−0.47 to 0.92)</td>
<td>0.11 (−0.57 to 0.78)</td>
<td>0.22 (−0.46 to 0.90)</td>
</tr>
<tr>
<td>Johansen et al.</td>
<td>VAS</td>
<td>5 and 10 min after pain had reached 7on a VAS</td>
<td>−0.45 (−1.13 to 0.24)</td>
<td>0.59 (−0.18 to 1.36)</td>
<td>−0.43 (−1.1 to 0.23)</td>
<td>0.58 (−0.17 to 1.32)</td>
</tr>
<tr>
<td>Kong et al. (2008)</td>
<td>VAS</td>
<td>After each stimulation</td>
<td>1.03 (0.45–1.61)</td>
<td>1.03 (0.45–1.61)</td>
<td>0.96 (0.42–1.50)</td>
<td>0.96 (0.42–1.50)</td>
</tr>
<tr>
<td>Vase et al. (2003)</td>
<td>M-VAS</td>
<td>After each stimulation</td>
<td>−0.04 (−0.83 to 0.76)</td>
<td>0.48 (−0.26 to 1.23)</td>
<td>−0.03 (−0.78 to 0.71)</td>
<td>0.45 (−0.25 to 1.15)</td>
</tr>
<tr>
<td>Vögtle et al. (2013)</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.36 (−0.19 to 0.90)</td>
<td>0.60 (0.05–1.14)</td>
<td>0.35 (−0.18 to 0.89)</td>
<td>0.59 (0.05–1.13)</td>
</tr>
<tr>
<td>Total d and g</td>
<td></td>
<td></td>
<td>0.65 (0.24–1.05)</td>
<td>1.07 (0.65–1.48)</td>
<td>0.62 (0.24–1.01)</td>
<td>1.03 (0.63–1.43)</td>
</tr>
</tbody>
</table>

NRS, numeric rating scale; VAS, visual analogue scale; M-VAS, mechanical visual analogue scale.

a Effect sizes were weighted according to the number of subjects (N) in each study (Hedges’ g) [30,31].

b Pain was measured via tolerance and thus the sign of the effect sizes was changed.
of pain increase) compared with a no-treatment group or condition. It is important to differentiate these effects from the apparent nocebo effects observed as adverse side effects in the placebo group in a randomized, controlled clinical trial [3,22] or in clinical practice. For example, Amanzio et al. [2] have investigated apparent nocebo effects in the placebo groups of randomized controlled trials with anti-migraine drugs. In this analysis, all patients received inactive placebo treatments, but there was a high rate of adverse side effects, and, interestingly, the side effects matched the side effects in the active treatment groups. This finding suggests that simple verbal suggestions of potential side effects during the informed consent process may persist in itself to the experience of aversive side effects.

Information about potential side effects or verbal suggestions of pain increase may induce apparent nocebo effects, not only in relation to administration of inert treatments, but also in relation to an active pain treatment. Bingel et al. [12] exposed healthy volunteers to experimental pain stimuli, gave them an active pain-reducing medication, and told them that the medication would worsen their pain when the infusion of medication ceased. Interestingly, the participants experienced a pain increase to the extent that the effect of the active treatment was abolished. Thus, the influence of verbal suggestions for pain worsening may be so potent that they outmatch the effect of active pain-reducing medication.

4.5. Conclusions

The findings from the present meta-analysis and the related studies on apparent nocebo effects may have important implications for clinical practice. The moderate to large but highly variable magnitude of nocebo effects produced by verbal suggestions alone demonstrates the importance of how information should be framed to minimize the harm of nocebo effects. Overall, the results of this meta-analysis and the findings from the previous meta-analyses of placebo effects suggest that, roughly speaking, it may be equally easy or difficult to obtain nocebo and placebo effects. Similar to placebo effects, nocebo effects have been shown to be especially large when verbal suggestions (of increased pain) are combined with conditioning. Therefore, it is likely that the efficacy of future pain treatments may be enhanced if both positive and negative experiences with treatments are addressed in pain patients.

Conflict of interest statement

The authors declare no conflicts of interest.

Acknowledgements

We thank Professor Michael Væth for helpful discussions of statistical issues and all authors of the included studies who have taken the time to provide us with their original data.

This work is part of the Europain Collaboration and funded by the Innovative Medicines Initiative Joint Undertaking (IMI JU) grant No. 115007, resources which are composed of financial contribution from the European Union’s Seventh Framework Program (FP7/2007–2013) and EFPIA companies in kind contribution (www.imi.europa.eu). It was also supported by the MINDLab UNIK initiative at Aarhus University, which is funded by the Danish Ministry of Science, Technology and Innovation.

L.C. is supported by the Intramural Program of the National Center for Complementary and Alternative Medicine, the Intramural Program of the National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.

Table 3

<table>
<thead>
<tr>
<th>Study</th>
<th>Pain measure</th>
<th>Time of pain measurement</th>
<th>Cohen’s d lowest (95% CI)</th>
<th>Cohen’s d highest (95% CI)</th>
<th>Hedges’ g lowest (95% CI)</th>
<th>Hedges’ g highest (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal suggestions alone</td>
<td>NRS</td>
<td>Before the injection and after 30 min</td>
<td>2.10 (1.29–2.91)</td>
<td>2.10 (1.29–2.91)</td>
<td>2.05 (1.26–2.85)</td>
<td>2.05 (1.26–2.85)</td>
</tr>
<tr>
<td>Benedetti et al. (2003)</td>
<td>Tolerancea</td>
<td>From last squeeze to unbearable pain</td>
<td>1.12 (0.29–1.95)</td>
<td>1.12 (0.29–1.95)</td>
<td>1.09 (0.28–1.89)</td>
<td>1.09 (0.28–1.89)</td>
</tr>
<tr>
<td>Johansen et al. (2003)</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.62 (0.35–1.60)</td>
<td>0.62 (0.35–1.60)</td>
<td>0.59 (0.33–1.50)</td>
<td>0.59 (0.33–1.51)</td>
</tr>
<tr>
<td>Vase et al. (2003)</td>
<td>M-VAS</td>
<td>After each stimulation</td>
<td>−0.04 (−0.83 to 0.76)</td>
<td>0.48 (−0.26 to 1.23)</td>
<td>−0.03 (−0.78 to 0.71)</td>
<td>0.45 (−0.25 to 1.15)</td>
</tr>
<tr>
<td>Average d and g</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.66 (−0.26 to 1.59)</td>
<td>0.90 (0.42–1.38)</td>
<td>0.64 (−0.25 to 1.53)</td>
<td>0.87 (0.40–1.34)</td>
</tr>
<tr>
<td>Verbal suggestions and conditioning</td>
<td>NRS</td>
<td>Every minute for 10 min</td>
<td>1.40 (0.53–2.28)</td>
<td>4.19 (2.79–5.59)</td>
<td>1.35 (0.51–2.20)</td>
<td>4.05 (2.70–5.41)</td>
</tr>
<tr>
<td>Colloca et al. (2008)</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>1.13 (0.61–1.64)</td>
<td>1.13 (0.61–1.64)</td>
<td>1.06 (0.57–1.55)</td>
<td>1.06 (0.57–1.55)</td>
</tr>
<tr>
<td>Colloca et al. (2010)</td>
<td>NRS</td>
<td>After each trial</td>
<td>0.53 (0.20–0.85)</td>
<td>0.82 (0.48–1.17)</td>
<td>0.51 (0.20–0.82)</td>
<td>0.79 (0.46–1.13)</td>
</tr>
<tr>
<td>Kong et al. (2008)</td>
<td>VAS</td>
<td>After each stimulation</td>
<td>1.03 (0.45–1.61)</td>
<td>1.03 (0.45–1.61)</td>
<td>0.96 (0.42–1.50)</td>
<td>0.96 (0.42–1.50)</td>
</tr>
<tr>
<td>Average d and g</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.80 (0.41–1.20)</td>
<td>1.22 (0.55–1.90)</td>
<td>0.76 (0.39–1.14)</td>
<td>1.17 (0.52–1.81)</td>
</tr>
<tr>
<td>Social observation</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.36 (−0.19 to 0.90)</td>
<td>0.36 (−0.19 to 0.90)</td>
<td>0.35 (−0.18 to 0.89)</td>
<td>0.35 (−0.18 to 0.89)</td>
</tr>
<tr>
<td>Total d and g</td>
<td>NRS</td>
<td>After each stimulation</td>
<td>0.65 (0.35–0.95)</td>
<td>0.79 (0.47–1.10)</td>
<td>0.63 (0.34–0.92)</td>
<td>0.77 (0.46–1.07)</td>
</tr>
</tbody>
</table>

NRS, numeric rating scale; VAS, visual analogue scale; M-VAS, mechanical visual analogue scale.

a Effect sizes were weighted according to the number of subjects in each study (Hedges’ g) [30,31].

b Pain was measured via tolerance and thus the sign of the effect sizes was changed.

c Total d and g vary from the overall magnitude of nocebo effects (Table 2), as both verbal suggestions alone and verbal suggestions and conditioning are measured in Colloca et al. [21], and therefore the study is represented in both categories.

d In Vögtle et al. [65], the lowest effect size was induced by means of social observation and thus the effect size is represented only once (ie, in the category of social observation).
Appendix A.

The studies listed gave rise to special considerations in relation to the selection criteria. For transparency, the reasons for exclusion are specified below.

Exclusion because of selection criterion 1: Study purpose (not in relation to pain)

Choi et al. (2010) [15] The influence of negative words on pain after caesarean section

De la Cruz et al. (2010) [23] Nocebo effects in relation to fatigue in cancer

Keitel et al. (2013) [40] Nocebo effects in relation to Parkinson’s disease

Klosterhalfen et al. (2009) [44] Nocebo effects in relation to rotation procedure

Levine et al. (2006) [46] Nocebo effects in relation to gastric symptoms and nausea

Link et al. (2006) [48] Nocebo effects in relation to cognitive performance

Pollo et al. (2012) [54] Nocebo effects in relation to motor training

Stovner et al. (2008) [58] Purpose not to investigate nocebo effects (nocebo-related interpretation of mobile telephone headache)

Swider and Babel (2013) [59] Purpose to investigate placebo effects in relation to pain but finding of nocebo effect; no inert agent administered (criterion 2)

Vernia et al. (2010) [65] Nocebo effects in relation to lactose intolerance

Exclusion because of selection criterion 1: Study purpose (side effects of drug or placebo)

Beedie et al. (2007) [5] Nocebo effects as side effects in relation to sport

Flaten et al. (1999) [28] Nocebo effects as side effects of drugs

Liccardi et al. (2004) [47] Nocebo effects as side effects of drugs

Lombardi et al. (2008) [49] Nocebo effects as side effects of drugs

Manchikanti et al. (2005) [51] Nocebo effects as side effects of drugs

Scott et al. (2008) [57] Nocebo effects as side effects of a placebo intervention

Exclusion because of selection criterion 2: Nocebo treatment

Jensen et al. (2012) [38] No inert agent administered (facial cues)

Lorenz et al. (2005) [50] No inert agent administered

Nicolodi and Torrini (2009) [53] No inert agent administered (nocebo in relation to headache; colored cues)

Van Laarhoven et al. (2012) [60] No inert agent administered

Varelmann et al. (2010) [61] No inert agent administered

Appendix B.

B.1. Specific considerations in relation to study design

The study by Kong et al. [45] used a baseline and test measurement on both a control and test area, but only data for the test area for baseline and test measurements were entered into the meta-analysis. The study by Elsenbruch et al. [25] used a baseline and test measurement on separate days for both the nocebo-treated group and the no-treatment group, but only data for the test measurements for both groups were entered into the meta-analysis. The study by Vögtle et al. [66] used a measurement of pain with and without ointment for both the nocebo-treated group and the no-treatment group. Only data for pain with ointment for both groups were entered into the meta-analysis. These adjustments facilitated more precise comparisons with the other studies.

B.2. Specific considerations in relation to how nocebo effects were induced

Across the studies, nocebo effects were induced by verbal suggestions of pain increase and sometimes in combination with a classical conditioning procedure. In 1 study [26], the verbal suggestions did not relate to the agent but, rather, to the sensitization of pain over time. In another study [66], the verbal suggestion was related to sensitization of the skin in patients not with pain but with sexual dysfunction. Both studies were accepted for inclusion because the conceptualization of nocebo and the design were in agreement with previous experimental nocebo studies. In 2 studies [21,66], nocebo effects were induced both by verbal suggestions alone in 1 group and by verbal suggestions combined with conditioning or by social observation in another group. In the calculation of the overall magnitude of the nocebo effect, both groups were entered into the analysis, whereas the groups were analyzed separately in the calculation of the lowest and highest effect size as a function of how the nocebo effect was induced. In 2 studies by Benedetti et al., group 5 [11] and groups 3 and 4 [8] were not included in the meta-analysis because they involved conditioning with pharmacological agents (ketorolac [11] and proglumide [8]) interfering with the development of the nocebo effect.

B.3. Specific considerations in relation to calculation of nocebo effects

The study by Benedetti et al. from 2006 [9] reported only means and standard deviations for the last pain ratings; however, we were interested in the means and standard deviations for each pain rating to calculate the lowest and highest effect size of the nocebo effect. As we did not have access to original data, we read the means and standard deviations for each pain rating of Figs. 2A and 3A in that article. However, when we compared the last pain rating reported in the article with our readouts, the standard deviations were different. Therefore, we adjusted all of our standard deviations with 0.24 so as to match our calculations with the accurate data.

B.4. Specific considerations in relation to pain stimuli and measures

In 1 study, the same participant was exposed to more than 1 painful stimulus [62], which led to the report of several nocebo effects. In this study, each irritable bowel syndrome patient was exposed to 2 different pain stimuli (evoked rectal distention and heat pain, that is, immersion of foot in hot water). Only the nocebo effect on rectal distention was entered into the meta-analysis, as this represents the most clinically relevant type of pain for this type of participant. In 1 of the studies by Colloca et al. [21], groups
1 to 4 were exposed to nonpainful stimuli (low and high tactile stimuli) and were not included in the meta-analysis, as only painful stimuli were accepted. In 1 of the studies by Benedetti et al. [11], only tolerance measures were reported, and these measures were entered into the meta-analysis.

B.5. Specific considerations in relation to pain measures over time

In some studies, the nocebo effect was measured over time at a certain interval (eg, every 5 minutes for 30 minutes). In a study by Johansen et al. [39], pain was measured over time at 5, 10, 15, and 20 minutes; however, after 15 minutes, only 6 of 20 subjects rated their pain. Thus, only the pain measures at 5 minutes (pain reports of 17 subjects) and 10 minutes (pain reports of 13 subjects) were entered into the meta-analysis. Also, some of the participants dropped out over time: 3 participants in both the no-treatment group and 7 participants in the no-treatment group and 6 participants in the nocebo-treated group dropped out after 5 minutes, and 7 participants in the no-treatment group and 6 participants in the nocebo-treated group dropped out after 10 minutes. Thus, N is different for the 2 time measurements.

References

